
Chapter 9

Exploring the World of Hadoop
In This Chapter
▶ Discovering Hadoop and why it’s so important
▶ Exploring the Hadoop Distributed File System
▶ Digging into Hadoop MapReduce
▶ Putting Hadoop to work

W 
hen you need to process big data sources, traditional approaches 
fall short. The volume, velocity, and variety of big data will bring 

most technologies to their knees, so new technologies had to be created to 
address this new challenge. MapReduce is one of those new technologies, but 
it is just an algorithm, a recipe for how to make sense of all the data. To get 
the most from MapReduce, you need more than just an algorithm. You need 
a collection of products and technologies designed to handle the challenges 
presented by big data.

Explaining Hadoop
Search engine innovators like Yahoo! and Google needed to find a way to 
make sense of the massive amounts of data that their engines were collect-
ing. These companies needed to both understand what information they 
were gathering and how they could monetize that data to support their 
business model. Hadoop was developed because it represented the most 
pragmatic way to allow companies to manage huge volumes of data easily. 
Hadoop allowed big problems to be broken down into smaller elements so 
that analysis could be done quickly and cost-effectively.

By breaking the big data problem into small pieces that could be processed 
in parallel, you can process the information and regroup the small pieces to 
present results.
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Hadoop (http://hadoop.apache.org) was originally built by a Yahoo! 
engineer named Doug Cutting and is now an open source project managed 
by the Apache Software Foundation. It is made available under the Apache 
License v2.0. Along with other projects that we examine in Chapter 10, 
Hadoop is a fundamental building block in our desire to capture and process 
big data. Hadoop is designed to parallelize data processing across computing 
nodes to speed computations and hide latency. At its core, Hadoop has two 
primary components:

 ✓ Hadoop Distributed File System: A reliable, high-bandwidth, low-cost, 
data storage cluster that facilitates the management of related files 
across machines.

 ✓ MapReduce engine: A high-performance parallel/distributed data- 
processing implementation of the MapReduce algorithm.

Hadoop is designed to process huge amounts of structured and unstructured 
data (terabytes to petabytes) and is implemented on racks of commodity 
servers as a Hadoop cluster. Servers can be added or removed from the 
cluster dynamically because Hadoop is designed to be “self-healing.” In other 
words, Hadoop is able to detect changes, including failures, and adjust to 
those changes and continue to operate without interruption.

We now take a closer look at the Hadoop Distributed File System (HDFS) and 
MapReduce as implemented in Hadoop.

Understanding the Hadoop Distributed 
File System (HDFS)

The Hadoop Distributed File System is a versatile, resilient, clustered 
approach to managing files in a big data environment. HDFS is not the final 
destination for files. Rather, it is a data service that offers a unique set of 
capabilities needed when data volumes and velocity are high. Because the 
data is written once and then read many times thereafter, rather than the 
constant read-writes of other file systems, HDFS is an excellent choice for 
supporting big data analysis. The service includes a “NameNode” and multi-
ple “data nodes” running on a commodity hardware cluster and provides the 
highest levels of performance when the entire cluster is in the same physical 
rack in the data center. In essence, the NameNode keeps track of where data 
is physically stored. Figure 9-1 depicts the basic architecture of HDFS.

http://hadoop.apache.org/
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Figure 9-1:  
How a 

Hadoop 
cluster is 

mapped to 
hardware.

 

NameNodes
HDFS works by breaking large files into smaller pieces called blocks. The 
blocks are stored on data nodes, and it is the responsibility of the NameNode 
to know what blocks on which data nodes make up the complete file. The 
NameNode also acts as a “traffic cop,” managing all access to the files, includ-
ing reads, writes, creates, deletes, and replication of data blocks on the data 
nodes. The complete collection of all the files in the cluster is sometimes 
referred to as the file system namespace. It is the NameNode’s job to manage 
this namespace.

Even though a strong relationship exists between the NameNode and the 
data nodes, they operate in a “loosely coupled” fashion. This allows the 
cluster elements to behave dynamically, adding (or subtracting) servers as 
the demand increases (or decreases). In a typical configuration, you find one 
NameNode and possibly a data node running on one physical server in the 
rack. Other servers run data nodes only.

Data nodes are not very smart, but the NameNode is. The data nodes con-
stantly ask the NameNode whether there is anything for them to do. This 
continuous behavior also tells the NameNode what data nodes are out there 
and how busy they are. The data nodes also communicate among themselves 
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so that they can cooperate during normal file system operations. This is 
necessary because blocks for one file are likely to be stored on multiple data 
nodes. Since the NameNode is so critical for correct operation of the cluster, 
it can and should be replicated to guard against a single point failure.

Data nodes
Data nodes are not smart, but they are resilient. Within the HDFS cluster, 
data blocks are replicated across multiple data nodes and access is man-
aged by the NameNode. The replication mechanism is designed for optimal 
efficiency when all the nodes of the cluster are collected into a rack. In fact, 
the NameNode uses a “rack ID” to keep track of the data nodes in the clus-
ter. HDFS clusters are sometimes referred to as being “rack-aware.” Data 
nodes also provide “heartbeat” messages to detect and ensure connectivity 
between the NameNode and the data nodes. When a heartbeat is no longer 
present, the NameNode unmaps the data node from the cluster and keeps 
on operating as though nothing happened. When the heartbeat returns (or a 
new heartbeat appears), it is added to the cluster transparently with respect 
to the user or application.

As with all file systems, data integrity is a key feature. HDFS supports a 
number of capabilities designed to provide data integrity. As you might 
expect, when files are broken into blocks and then distributed across differ-
ent servers in the cluster, any variation in the operation of any element could 
affect data integrity. HDFS uses transaction logs and checksum validation to 
ensure integrity across the cluster.

Transaction logs are a very common practice in file system and database 
design. They keep track of every operation and are effective in auditing or 
rebuilding of the file system should something untoward occur.

Checksum validations are used to guarantee the contents of files in HDFS. 
When a client requests a file, it can verify the contents by examining its 
checksum. If the checksum matches, the file operation can continue. If not, 
an error is reported. Checksum files are hidden to help avoid tampering.

Data nodes use local disks in the commodity server for persistence. All 
the data blocks are stored locally, primarily for performance reasons. Data 
blocks are replicated across several data nodes, so the failure of one server 
may not necessarily corrupt a file. The degree of replication, the number 
of data nodes, and the HDFS namespace are established when the cluster 
is implemented. Because HDFS is dynamic, all parameters can be adjusted 
during the operation of the cluster.
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Under the covers of HDFS
Big data brings the big challenges of volume, velocity, and variety. As cov-
ered in the previous sections, HDFS addresses these challenges by breaking 
files into a related collection of smaller blocks. These blocks are distrib-
uted among the data nodes in the HDFS cluster and are managed by the 
NameNode. Block sizes are configurable and are usually 128 megabytes (MB) 
or 256MB, meaning that a 1GB file consumes eight 128MB blocks for its basic 
storage needs. HDFS is resilient, so these blocks are replicated throughout 
the cluster in case of a server failure. How does HDFS keep track of all these 
pieces? The short answer is file system metadata.

Metadata is defined as “data about data.” Software designers have been using 
metadata for decades under several names like data dictionary, metadata 
directory, and more recently, tags. Think of HDFS metadata as a template for 
providing a detailed description of the following:

 ✓ When the file was created, accessed, modified, deleted, and so on

 ✓ Where the blocks of the file are stored in the cluster

 ✓ Who has the rights to view or modify the file

 ✓ How many files are stored on the cluster

 ✓ How many data nodes exist in the cluster

 ✓ The location of the transaction log for the cluster

HDFS metadata is stored in the NameNode, and while the cluster is operating, 
all the metadata is loaded into the physical memory of the NameNode server. 
As you might expect, the larger the cluster, the larger the metadata footprint. 
For best performance, the NameNode server should have lots of physical 
memory and, ideally, lots of solid-state disks. The more the merrier, from a 
performance point of view.

As we cover earlier in the chapter, the data nodes are very simplistic. They 
are servers that contain the blocks for a given set of files. It is reasonable to 
think of data nodes as “block servers” because that is their primary function. 
What exactly does a block server do? Check out the following list:

 ✓ Stores (and retrieves) the data blocks in the local file system of the 
server. HDFS is available on many different operating systems and 
behaves the same whether on Windows, Mac OS, or Linux.

 ✓ Stores the metadata of a block in the local file system based on the meta-
data template in the NameNode.

 ✓ Performs periodic validations of file checksums.
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 ✓ Sends regular reports to the NameNode about what blocks are available 
for file operations.

 ✓ Provides metadata and data to clients on demand. HDFS supports direct 
access to the data nodes from client application programs.

 ✓ Forwards data to other data nodes based on a “pipelining” model.

Block placement on the data nodes is critical to data replication and support 
for data pipelining. HDFS keeps one replica of every block locally. It then 
places a second replica on a different rack to guard against a complete rack 
failure. It also sends a third replica to the same remote rack, but to a different 
server in the rack. Finally, it can send additional replicas to random locations 
in local or remote clusters. HDFS is serious about data replication and resil-
iency. Fortunately, client applications do not need to worry about where all 
the blocks are located. In fact, clients are directed to the nearest replica to 
ensure highest performance.

HDFS supports the capability to create data pipelines. A pipeline is a con-
nection between multiple data nodes that exists to support the movement of 
data across the servers. A client application writes a block to the first data 
node in the pipeline. The data node takes over and forwards the data to the 
next node in the pipeline; this continues until all the data, and all the data 
replicas, are written to disk. At this point, the client repeats the process by 
writing the next block in the file. As you see later in this chapter, this is an 
important feature for Hadoop MapReduce.

With all these files and blocks and servers, you might wonder how things are 
kept in balance. Without any intervention, it is possible for one data node to 
become congested while another might be nearly empty. HDFS has a “rebal-
ancer” service that’s designed to address these possibilities. The goal is to 
balance the data nodes based on how full each set of local disks might be. 
The rebalancer runs while the cluster is active and can be throttled to avoid 
congestion of network traffic. After all, HDFS needs to manage the files and 
blocks first and then worry about how balanced the cluster needs to be.

The rebalancer is effective, but it does not have a great deal of built-in intel-
ligence. For example, you can’t create access or load patterns and have the 
rebalancer optimize for those conditions. Nor will it identify data “hot spots” 
and correct for them. Perhaps these features will be offered in future ver-
sions of HDFS.

Hadoop MapReduce
To fully understand the capabilities of Hadoop MapReduce, we need to dif-
ferentiate between MapReduce (the algorithm) and an implementation of 
MapReduce. Hadoop MapReduce is an implementation of the algorithm 
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developed and maintained by the Apache Hadoop project. It is helpful to 
think about this implementation as a MapReduce engine, because that is 
exactly how it works. You provide input (fuel), the engine converts the input 
into output quickly and efficiently, and you get the answers you need. You 
are using Hadoop to solve business problems, so it is necessary for you to 
understand how and why it works. So, we take a look at the Hadoop imple-
mentation of MapReduce in more detail.

Hadoop MapReduce includes several stages, each with an important set of 
operations helping to get to your goal of getting the answers you need from 
big data. The process starts with a user request to run a MapReduce program 
and continues until the results are written back to the HDFS. Figure 9-2 illus-
trates how MapReduce performs its tasks.

 

Figure 9-2: 
Workflow 
and data 

movement 
in a small 

Hadoop 
cluster.

 

HDFS and MapReduce perform their work on nodes in a cluster hosted on 
racks of commodity servers. To simplify the discussion, the diagram shows 
only two nodes.

Getting the data ready
When a client requests a MapReduce program to run, the first step is to 
locate and read the input file containing the raw data. The file format is com-
pletely arbitrary, but the data must be converted to something the program 
can process. This is the function of InputFormat and RecordReader (RR). 
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InputFormat decides how the file is going to be broken into smaller pieces for 
processing using a function called InputSplit. It then assigns a RecordReader 
to transform the raw data for processing by the map. If you read the discus-
sion of map in Chapter 8, you know it requires two inputs: a key and a value. 
Several types of RecordReaders are supplied with Hadoop, offering a wide 
variety of conversion options. This feature is one of the ways that Hadoop 
manages the huge variety of data types found in big data problems.

Let the mapping begin
Your data is now in a form acceptable to map. For each input pair, a distinct 
instance of map is called to process the data. But what does it do with the pro-
cessed output, and how can you keep track of them? Map has two additional 
capabilities to address the questions. Because map and reduce need to work 
together to process your data, the program needs to collect the output from 
the independent mappers and pass it to the reducers. This task is performed 
by an OutputCollector. A Reporter function also provides information gathered 
from map tasks so that you know when or if the map tasks are complete.

All this work is being performed on multiple nodes in the Hadoop cluster 
simultaneously. You may have cases where the output from certain map-
ping processes needs to be accumulated before the reducers can begin. Or, 
some of the intermediate results may need to be processed before reduc-
tion. In addition, some of this output may be on a node different from the 
node where the reducers for that specific output will run. The gathering and 
shuffling of intermediate results are performed by a partitioner and a sort. 
The map tasks will deliver the results to a specific partition as inputs to the 
reduce tasks. After all the map tasks are complete, the intermediate results 
are gathered in the partition and a shuffling occurs, sorting the output for 
optimal processing by reduce.

Reduce and combine
For each output pair, reduce is called to perform its task. In similar fash-
ion to map, reduce gathers its output while all the tasks are processing. 
Reduce can’t begin until all the mapping is done, and it isn’t finished until all 
instances are complete. The output of reduce is also a key and a value. While 
this is necessary for reduce to do its work, it may not be the most effec-
tive output format for your application. Hadoop provides an OutputFormat 
feature, and it works very much like InputFormat. OutputFormat takes the 
key-value pair and organizes the output for writing to HDFS. The last task 
is to actually write the data to HDFS. This is performed by RecordWriter, 
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and it performs similarly to RecordReader except in reverse. It takes the 
OutputFormat data and writes it to HDFS in the form necessary for the 
requirements of the application program.

The coordination of all these activities was managed in earlier versions of 
Hadoop by a job scheduler. This scheduler was rudimentary, and as the mix 
of jobs changed and grew, it was clear that a different approach was neces-
sary. The primary deficiency in the old scheduler was the lack of resource 
management. The latest version of Hadoop has this new capability, and we 
look at it more closely in Chapter 10.

Hadoop MapReduce is the heart of the Hadoop system. It provides all the 
capabilities you need to break big data into manageable chunks, process the 
data in parallel on your distributed cluster, and then make the data available 
for user consumption or additional processing. And it does all this work in a 
highly resilient, fault-tolerant manner. This is just the beginning. The Hadoop 
ecosystem is a large, growing set of tools and technologies designed specifi-
cally for cutting your big data problems down to size.
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Chapter 10

The Hadoop Foundation and 
Ecosystem

In This Chapter
▶ Why the Hadoop ecosystem is foundational for big data
▶ Managing resources and applications with Hadoop YARN
▶ Storing big data with HBase
▶ Mining big data with Hive
▶ Interacting with the Hadoop ecosystem

A 
s Chapter 9 explains, Hadoop MapReduce and Hadoop Distributed 
File System (HDFS) are powerful technologies designed to address big 

data challenges. That’s the good news. The bad news is that you really need 
to be a programmer or data scientist to be able to get the most out of these 
elemental components. Enter the Hadoop ecosystem. For several years and 
for the foreseeable future, open source as well as commercial developers all 
over the world have been building and testing tools to increase the adop-
tion and usability of Hadoop. Many are working on bits of the ecosystem and 
offering their enhancements back to the Apache project. This constant flow 
of fixes and improvements helps to drive the entire ecosystem forward in a 
controlled and secure manner.

In this chapter, you take a look at the various technologies that make up the 
Hadoop ecosystem.

Building a Big Data Foundation  
with the Hadoop Ecosystem

Trying to tackle big data challenges without a toolbox filled with technology 
and services is like trying to empty the ocean with a spoon. As core com-
ponents, Hadoop MapReduce and HDFS are constantly being improved and 
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provide great starting points, but you need something more. The Hadoop 
ecosystem provides an ever-expanding collection of tools and technologies 
specifically created to smooth the development, deployment, and support of 
big data solutions. Before we look at the key components of the ecosystem, 
let’s take a moment to discuss the Hadoop ecosystem and the role it plays on 
the big data stage.

No building is stable without a foundation. While important, stability is not 
the only important criterion in a building. Each part of the building must 
support its overall purpose. The walls, floors, stairs, electrical, plumbing, 
and roof need to complement each other while relying on the foundation for 
support and integration. It is the same with the Hadoop ecosystem. The foun-
dation is MapReduce and HDFS. They provide the basic structure and integra-
tion services needed to support the core requirements of big data solutions. 
The remainder of the ecosystem provides the components you need to build 
and manage purpose-driven big data applications for the real world.

In the absence of the ecosystem it would be incumbent on developers, data-
base administrators, system and network managers, and others to identify 
and agree on a set of technologies to build and deploy big data solutions. 
This is often the case when businesses want to adapt new and emerging tech-
nology trends. The chore of cobbling together technologies in a new market 
is daunting. That is why the Hadoop ecosystem is so fundamental to the suc-
cess of big data. It is the most comprehensive collection of tools and technol-
ogies available today to target big data challenges. The ecosystem facilitate 
the creation of new opportunities for the widespread adoption of big data by 
businesses and organizations. 

Managing Resources and Applications 
with Hadoop YARN

Job scheduling and tracking are integral parts of Hadoop MapReduce. The 
early versions of Hadoop supported a rudimentary job and task tracking 
system, but as the mix of work supported by Hadoop changed, the scheduler 
could not keep up. In particular, the old scheduler could not manage non-
MapReduce jobs, and it was incapable of optimizing cluster utilization. So a 
new capability was designed to address these shortcomings and offer more 
flexibility, efficiency, and performance.

Yet Another Resource Negotiator (YARN) is a core Hadoop service providing 
two major services:

 ✓ Global resource management (ResourceManager)

 ✓ Per-application management (ApplicationMaster)
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The ResourceManager is a master service and control NodeManager in 
each of the nodes of a Hadoop cluster. Included in the ResourceManager is 
Scheduler, whose sole task is to allocate system resources to specific running 
applications (tasks), but it does not monitor or track the application’s status. 
All the required system information is stored in a Resource Container. It con-
tains detailed CPU, disk, network, and other important resource attributes 
necessary for running applications on the node and in the cluster.

Each node has a NodeManager slaved to the global ResourceManager in the 
cluster. The NodeManager monitors the application’s usage of CPU, disk, 
network, and memory and reports back to the ResourceManager. For each 
application running on the node there is a corresponding ApplicationMaster. 
If more resources are necessary to support the running application, the 
ApplicationMaster notifies the NodeManager and the NodeManager negoti-
ates with the ResourceManager (Scheduler) for the additional capacity on 
behalf of the application. The NodeManager is also responsible for tracking 
job status and progress within its node.

Storing Big Data with HBase
HBase is a distributed, nonrelational (columnar) database that utilizes HDFS 
as its persistence store. It is modeled after Google BigTable and is capable of 
hosting very large tables (billions of columns/rows) because it is layered on 
Hadoop clusters of commodity hardware. HBase provides random, real-time 
read/write access to big data. HBase is highly configurable, providing a great 
deal of flexibility to address huge amounts of data efficiently. Now take a look 
at how HBase can help address your big data challenges.

HBase is a columnar database, so all data is stored into tables with rows 
and columns similar to relational database management systems (RDBMSs). 
The intersection of a row and a column is called a cell. One important dif-
ference between HBase tables and RDBMS tables is versioning. Each cell 
value includes a “version” attribute, which is nothing more than a timestamp 
uniquely identifying the cell. Versioning tracks changes in the cell and makes 
it possible to retrieve any version of the contents should it become neces-
sary. HBase stores the data in cells in decreasing order (using the time-
stamp), so a read will always find the most recent values first.

Columns in HBase belong to a column family. The column family name is used 
as a prefix to identify members of its family. For example, fruits:apple and 
fruits:banana are members of the fruits column family. HBase implementations 
are tuned at the column family level, so it is important to be mindful of how 
you are going to access the data and how big you expect the columns to be.
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The rows in HBase tables also have a key associated with them. The struc-
ture of the key is very flexible. It can be a computed value, a string, or even 
another data structure. The key is used to control access to the cells in the 
row, and they are stored in order from low value to high value.

All of these features together make up the schema. The schema is defined 
and created before any data can be stored. Even so, tables can be altered 
and new column families can be added after the database is up and running. 
This extensibility is extremely useful when dealing with big data because you 
don’t always know about the variety of your data streams.

Mining Big Data with Hive
Hive is a batch-oriented, data-warehousing layer built on the core elements 
of Hadoop (HDFS and MapReduce). It provides users who know SQL with 
a simple SQL-lite implementation called HiveQL without sacrificing access 
via mappers and reducers. With Hive, you can get the best of both worlds: 
SQL-like access to structured data and sophisticated big data analysis with 
MapReduce.

Unlike most data warehouses, Hive is not designed for quick responses to 
queries. In fact, queries can take several minutes or even hours depending 
on the complexity. As a result, Hive is best used for data mining and deeper 
analytics that do not require real-time behaviors. Because it relies on the 
Hadoop foundation, it is very extensible, scalable, and resilient, something 
that the average data warehouse is not.

Hive uses three mechanisms for data organization:

 ✓ Tables: Hive tables are the same as RDBMS tables consisting of rows 
and columns. Because Hive is layered on the Hadoop HDFS, tables are 
mapped to directories in the file system. In addition, Hive supports 
tables stored in other native file systems.

 ✓ Partitions: A Hive table can support one or more partitions. These par-
titions are mapped to subdirectories in the underlying file system and 
represent the distribution of data throughout the table. For example, if 
a table is called autos, with a key value of 12345 and a maker value Ford, 
the path to the partition would be /hivewh/autos/kv=12345/Ford.

 ✓ Buckets: In turn, data may be divided into buckets. Buckets are stored 
as files in the partition directory in the underlying file system. The 
buckets are based on the hash of a column in the table. In the preceding 
example, you might have a bucket called Focus, containing all the attri-
butes of a Ford Focus auto.
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Hive metadata is stored externally in the “metastore.” The metastore is a 
relational database containing the detailed descriptions of the Hive schema, 
including column types, owners, key and value data, table statistics, and so 
on. The metastore is capable of syncing catalog data with other metadata  
services in the Hadoop ecosystem. 

Hive supports an SQL-like language called HiveQL. HiveQL supports many 
of the SQL primitives, such as select, join, aggregate, union all, and so on. It 
also supports multitable queries and inserts by sharing the input data within 
a single HiveQL statement. HiveQL can be extended to support user-defined 
aggregation, column transformation, and embedded MapReduce scripts.

Interacting with the Hadoop Ecosystem
Writing programs or using specialty query languages are not the only ways 
you interact with the Hadoop ecosystem. IT teams that manage infrastruc-
tures need to control Hadoop and the big data applications created for it. As 
big data becomes mainstream, non-technical professionals will want to try 
to solve business problems with big data. Look at some examples from the 
Hadoop ecosystem that help these constituencies.

Pig and Pig Latin
The power and flexibility of Hadoop are immediately visible to software 
developers primarily because the Hadoop ecosystem was built by develop-
ers, for developers. However, not everyone is a software developer. Pig was 
designed to make Hadoop more approachable and usable by nondevelopers. 
Pig is an interactive, or script-based, execution environment supporting Pig 
Latin, a language used to express data flows. The Pig Latin language supports 
the loading and processing of input data with a series of operators that trans-
form the input data and produce the desired output.

The Pig execution environment has two modes:

 ✓ Local mode: All scripts are run on a single machine. Hadoop MapReduce 
and HDFS are not required.

 ✓ Hadoop: Also called MapReduce mode, all scripts are run on a given 
Hadoop cluster.

Under the covers, Pig creates a set of map and reduce jobs. The user is 
absolved from the concerns of writing code, compiling, packaging, submit-
ting, and retrieving the results. In many respects, Pig is analogous to SQL in 
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the RDBMS world. The Pig Latin language provides an abstract way to get 
answers from big data by focusing on the data and not the structure of a 
custom software program. Pig makes prototyping very simple. For example, 
you can run a Pig script on a small representation of your big data environ-
ment to ensure that you are getting the desired results before you commit to 
processing all the data.

Pig programs can be run in three different ways, all of them compatible with 
local and Hadoop mode:

 ✓ Script: Simply a file containing Pig Latin commands, identified by the 
.pig suffix (for example, file.pig or myscript.pig). The commands 
are interpreted by Pig and executed in sequential order.

 ✓ Grunt: Grunt is a command interpreter. You can type Pig Latin on the 
grunt command line and Grunt will execute the command on your 
behalf. This is very useful for prototyping and “what if” scenarios.

 ✓ Embedded: Pig programs can be executed as part of a Java program.

Pig Latin has a very rich syntax. It supports operators for the following  
operations:

 ✓ Loading and storing of data

 ✓ Streaming data

 ✓ Filtering data

 ✓ Grouping and joining data

 ✓ Sorting data

 ✓ Combining and splitting data

Pig Latin also supports a wide variety of types, expressions, functions, diag-
nostic operators, macros, and file system commands.

To get more examples, visit the Pig website within Apache.com. It is a rich 
resource that will provide you with all the details: http://pig.apache.org.

Sqoop
Many businesses store information in RDBMSs and other data stores, so they 
need a way to move data back and forth from these data stores to Hadoop. 
While it is sometimes necessary to move the data in real time, it is most 
often necessary to load or unload data in bulk. Sqoop (SQL-to-Hadoop) is a 
tool that offers the capability to extract data from non-Hadoop data stores, 

http://pig.apache.org/
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transform the data into a form usable by Hadoop, and then load the data into 
HDFS. This process is called ETL, for Extract, Transform, and Load. While 
getting data into Hadoop is critical for processing using MapReduce, it is also 
critical to get data out of Hadoop and into an external data source for use in 
other kinds of application. Sqoop is able to do this as well.

Like Pig, Sqoop is a command-line interpreter. You type Sqoop commands 
into the interpreter and they are executed one at a time. Four key features 
are found in Sqoop:

 ✓ Bulk import: Sqoop can import individual tables or entire databases 
into HDFS. The data is stored in the native directories and files in the 
HDFS file system.

 ✓ Direct input: Sqoop can import and map SQL (relational) databases 
directly into Hive and HBase.

 ✓ Data interaction: Sqoop can generate Java classes so that you can inter-
act with the data programmatically.

 ✓ Data export: Sqoop can export data directly from HDFS into a relational 
database using a target table definition based on the specifics of the 
target database.

Sqoop works by looking at the database you want to import and selecting an 
appropriate import function for the source data. After it recognizes the input, 
it then reads the metadata for the table (or database) and creates a class def-
inition of your input requirements. You can force Sqoop to be very selective 
so that you get just the columns you are looking for before input rather than 
doing an entire input and then looking for your data. This can save consider-
able time. The actual import from the external database to HDFS is performed 
by a MapReduce job created behind the scenes by Sqoop.

Sqoop is another effective tool for nonprogrammers. The other impor-
tant item to note is the reliance on underlying technologies like HDFS and 
MapReduce. You see this repeatedly throughout the element of the Hadoop 
ecosystem.

Zookeeper
Hadoop’s greatest technique for addressing big data challenges is its capabil-
ity to divide and conquer. After the problem has been divided, the conquer-
ing relies on the capability to employ distributed and parallel processing 
techniques across the Hadoop cluster. For some big data problems, the 
interactive tools are unable to provide the insights or timeliness required 
to make business decisions. In those cases, you need to create distributed 



128 Part III: Big Data Management 

applications to solve those big data problems. Zookeeper is Hadoop’s way of 
coordinating all the elements of these distributed applications.

Zookeeper as a technology is actually simple, but its features are powerful. 
Arguably, it would be difficult, if not impossible, to create resilient, fault-
tolerant distributed Hadoop applications without it. Some of the capabilities 
of Zookeeper are as follows:

 ✓ Process synchronization: Zookeeper coordinates the starting and stop-
ping of multiple nodes in the cluster. This ensures that all processing 
occurs in the intended order. When an entire process group is complete, 
then and only then can subsequent processing occur.

 ✓ Configuration management: Zookeeper can be used to send configura-
tion attributes to any or all nodes in the cluster. When processing is 
dependent on particular resources being available on all the nodes, 
Zookeeper ensures the consistency of the configurations.

 ✓ Self-election: Zookeeper understands the makeup of the cluster and can 
assign a “leader” role to one of the nodes. This leader/master handles 
all client requests on behalf of the cluster. Should the leader node fail, 
another leader will be elected from the remaining nodes.

 ✓ Reliable messaging: Even though workloads in Zookeeper are loosely 
coupled, you still have a need for communication between and 
among the nodes in the cluster specific to the distributed application. 
Zookeeper offers a publish/subscribe capability that allows the creation 
of a queue. This queue guarantees message delivery even in the case of 
a node failure.

Because Zookeeper is managing groups of nodes in service to a single distrib-
uted application, it is best implemented across racks. This is very different 
than the requirements for the cluster itself (within racks). The underlying 
reason is simple: Zookeeper needs to perform, be resilient, and be fault tol-
erant at a level above the cluster itself. Remember that a Hadoop cluster is 
already fault tolerant, so it will heal itself. Zookeeper just needs to worry 
about its own fault tolerance.

The Hadoop ecosystem and the supported commercial distributions are 
ever-changing. New tools and technologies are introduced, existing technolo-
gies are improved, and some technologies are retired by a (hopefully better) 
replacement. This one of the greatest advantages of open source. Another is 
the adoption of open source technologies by commercial companies. These 
companies enhance the products, making them better for everyone by offer-
ing support and services at a modest cost. This is how the Hadoop ecosys-
tem has evolved and why it is a good choice for helping to solve your big 
data challenges.
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