
Chapter 9

Exploring the World of Hadoop
In This Chapter
▶ Discovering Hadoop and why it’s so important
▶ Exploring the Hadoop Distributed File System
▶ Digging into Hadoop MapReduce
▶ Putting Hadoop to work

W
hen you need to process big data sources, traditional approaches
fall short. The volume, velocity, and variety of big data will bring

most technologies to their knees, so new technologies had to be created to
address this new challenge. MapReduce is one of those new technologies, but
it is just an algorithm, a recipe for how to make sense of all the data. To get
the most from MapReduce, you need more than just an algorithm. You need
a collection of products and technologies designed to handle the challenges
presented by big data.

Explaining Hadoop
Search engine innovators like Yahoo! and Google needed to find a way to
make sense of the massive amounts of data that their engines were collect-
ing. These companies needed to both understand what information they
were gathering and how they could monetize that data to support their
business model. Hadoop was developed because it represented the most
pragmatic way to allow companies to manage huge volumes of data easily.
Hadoop allowed big problems to be broken down into smaller elements so
that analysis could be done quickly and cost-effectively.

By breaking the big data problem into small pieces that could be processed
in parallel, you can process the information and regroup the small pieces to
present results.

112 Part III: Big Data Management

Hadoop (http://hadoop.apache.org) was originally built by a Yahoo!
engineer named Doug Cutting and is now an open source project managed
by the Apache Software Foundation. It is made available under the Apache
License v2.0. Along with other projects that we examine in Chapter 10,
Hadoop is a fundamental building block in our desire to capture and process
big data. Hadoop is designed to parallelize data processing across computing
nodes to speed computations and hide latency. At its core, Hadoop has two
primary components:

 ✓ Hadoop Distributed File System: A reliable, high-bandwidth, low-cost,
data storage cluster that facilitates the management of related files
across machines.

 ✓ MapReduce engine: A high-performance parallel/distributed data-
processing implementation of the MapReduce algorithm.

Hadoop is designed to process huge amounts of structured and unstructured
data (terabytes to petabytes) and is implemented on racks of commodity
servers as a Hadoop cluster. Servers can be added or removed from the
cluster dynamically because Hadoop is designed to be “self-healing.” In other
words, Hadoop is able to detect changes, including failures, and adjust to
those changes and continue to operate without interruption.

We now take a closer look at the Hadoop Distributed File System (HDFS) and
MapReduce as implemented in Hadoop.

Understanding the Hadoop Distributed
File System (HDFS)

The Hadoop Distributed File System is a versatile, resilient, clustered
approach to managing files in a big data environment. HDFS is not the final
destination for files. Rather, it is a data service that offers a unique set of
capabilities needed when data volumes and velocity are high. Because the
data is written once and then read many times thereafter, rather than the
constant read-writes of other file systems, HDFS is an excellent choice for
supporting big data analysis. The service includes a “NameNode” and multi-
ple “data nodes” running on a commodity hardware cluster and provides the
highest levels of performance when the entire cluster is in the same physical
rack in the data center. In essence, the NameNode keeps track of where data
is physically stored. Figure 9-1 depicts the basic architecture of HDFS.

http://hadoop.apache.org/

113 Chapter 9: Exploring the World of Hadoop

Figure 9-1:
How a

Hadoop
cluster is

mapped to
hardware.

NameNodes
HDFS works by breaking large files into smaller pieces called blocks. The
blocks are stored on data nodes, and it is the responsibility of the NameNode
to know what blocks on which data nodes make up the complete file. The
NameNode also acts as a “traffic cop,” managing all access to the files, includ-
ing reads, writes, creates, deletes, and replication of data blocks on the data
nodes. The complete collection of all the files in the cluster is sometimes
referred to as the file system namespace. It is the NameNode’s job to manage
this namespace.

Even though a strong relationship exists between the NameNode and the
data nodes, they operate in a “loosely coupled” fashion. This allows the
cluster elements to behave dynamically, adding (or subtracting) servers as
the demand increases (or decreases). In a typical configuration, you find one
NameNode and possibly a data node running on one physical server in the
rack. Other servers run data nodes only.

Data nodes are not very smart, but the NameNode is. The data nodes con-
stantly ask the NameNode whether there is anything for them to do. This
continuous behavior also tells the NameNode what data nodes are out there
and how busy they are. The data nodes also communicate among themselves

114 Part III: Big Data Management

so that they can cooperate during normal file system operations. This is
necessary because blocks for one file are likely to be stored on multiple data
nodes. Since the NameNode is so critical for correct operation of the cluster,
it can and should be replicated to guard against a single point failure.

Data nodes
Data nodes are not smart, but they are resilient. Within the HDFS cluster,
data blocks are replicated across multiple data nodes and access is man-
aged by the NameNode. The replication mechanism is designed for optimal
efficiency when all the nodes of the cluster are collected into a rack. In fact,
the NameNode uses a “rack ID” to keep track of the data nodes in the clus-
ter. HDFS clusters are sometimes referred to as being “rack-aware.” Data
nodes also provide “heartbeat” messages to detect and ensure connectivity
between the NameNode and the data nodes. When a heartbeat is no longer
present, the NameNode unmaps the data node from the cluster and keeps
on operating as though nothing happened. When the heartbeat returns (or a
new heartbeat appears), it is added to the cluster transparently with respect
to the user or application.

As with all file systems, data integrity is a key feature. HDFS supports a
number of capabilities designed to provide data integrity. As you might
expect, when files are broken into blocks and then distributed across differ-
ent servers in the cluster, any variation in the operation of any element could
affect data integrity. HDFS uses transaction logs and checksum validation to
ensure integrity across the cluster.

Transaction logs are a very common practice in file system and database
design. They keep track of every operation and are effective in auditing or
rebuilding of the file system should something untoward occur.

Checksum validations are used to guarantee the contents of files in HDFS.
When a client requests a file, it can verify the contents by examining its
checksum. If the checksum matches, the file operation can continue. If not,
an error is reported. Checksum files are hidden to help avoid tampering.

Data nodes use local disks in the commodity server for persistence. All
the data blocks are stored locally, primarily for performance reasons. Data
blocks are replicated across several data nodes, so the failure of one server
may not necessarily corrupt a file. The degree of replication, the number
of data nodes, and the HDFS namespace are established when the cluster
is implemented. Because HDFS is dynamic, all parameters can be adjusted
during the operation of the cluster.

115 Chapter 9: Exploring the World of Hadoop

Under the covers of HDFS
Big data brings the big challenges of volume, velocity, and variety. As cov-
ered in the previous sections, HDFS addresses these challenges by breaking
files into a related collection of smaller blocks. These blocks are distrib-
uted among the data nodes in the HDFS cluster and are managed by the
NameNode. Block sizes are configurable and are usually 128 megabytes (MB)
or 256MB, meaning that a 1GB file consumes eight 128MB blocks for its basic
storage needs. HDFS is resilient, so these blocks are replicated throughout
the cluster in case of a server failure. How does HDFS keep track of all these
pieces? The short answer is file system metadata.

Metadata is defined as “data about data.” Software designers have been using
metadata for decades under several names like data dictionary, metadata
directory, and more recently, tags. Think of HDFS metadata as a template for
providing a detailed description of the following:

 ✓ When the file was created, accessed, modified, deleted, and so on

 ✓ Where the blocks of the file are stored in the cluster

 ✓ Who has the rights to view or modify the file

 ✓ How many files are stored on the cluster

 ✓ How many data nodes exist in the cluster

 ✓ The location of the transaction log for the cluster

HDFS metadata is stored in the NameNode, and while the cluster is operating,
all the metadata is loaded into the physical memory of the NameNode server.
As you might expect, the larger the cluster, the larger the metadata footprint.
For best performance, the NameNode server should have lots of physical
memory and, ideally, lots of solid-state disks. The more the merrier, from a
performance point of view.

As we cover earlier in the chapter, the data nodes are very simplistic. They
are servers that contain the blocks for a given set of files. It is reasonable to
think of data nodes as “block servers” because that is their primary function.
What exactly does a block server do? Check out the following list:

 ✓ Stores (and retrieves) the data blocks in the local file system of the
server. HDFS is available on many different operating systems and
behaves the same whether on Windows, Mac OS, or Linux.

 ✓ Stores the metadata of a block in the local file system based on the meta-
data template in the NameNode.

 ✓ Performs periodic validations of file checksums.

116 Part III: Big Data Management

 ✓ Sends regular reports to the NameNode about what blocks are available
for file operations.

 ✓ Provides metadata and data to clients on demand. HDFS supports direct
access to the data nodes from client application programs.

 ✓ Forwards data to other data nodes based on a “pipelining” model.

Block placement on the data nodes is critical to data replication and support
for data pipelining. HDFS keeps one replica of every block locally. It then
places a second replica on a different rack to guard against a complete rack
failure. It also sends a third replica to the same remote rack, but to a different
server in the rack. Finally, it can send additional replicas to random locations
in local or remote clusters. HDFS is serious about data replication and resil-
iency. Fortunately, client applications do not need to worry about where all
the blocks are located. In fact, clients are directed to the nearest replica to
ensure highest performance.

HDFS supports the capability to create data pipelines. A pipeline is a con-
nection between multiple data nodes that exists to support the movement of
data across the servers. A client application writes a block to the first data
node in the pipeline. The data node takes over and forwards the data to the
next node in the pipeline; this continues until all the data, and all the data
replicas, are written to disk. At this point, the client repeats the process by
writing the next block in the file. As you see later in this chapter, this is an
important feature for Hadoop MapReduce.

With all these files and blocks and servers, you might wonder how things are
kept in balance. Without any intervention, it is possible for one data node to
become congested while another might be nearly empty. HDFS has a “rebal-
ancer” service that’s designed to address these possibilities. The goal is to
balance the data nodes based on how full each set of local disks might be.
The rebalancer runs while the cluster is active and can be throttled to avoid
congestion of network traffic. After all, HDFS needs to manage the files and
blocks first and then worry about how balanced the cluster needs to be.

The rebalancer is effective, but it does not have a great deal of built-in intel-
ligence. For example, you can’t create access or load patterns and have the
rebalancer optimize for those conditions. Nor will it identify data “hot spots”
and correct for them. Perhaps these features will be offered in future ver-
sions of HDFS.

Hadoop MapReduce
To fully understand the capabilities of Hadoop MapReduce, we need to dif-
ferentiate between MapReduce (the algorithm) and an implementation of
MapReduce. Hadoop MapReduce is an implementation of the algorithm

117 Chapter 9: Exploring the World of Hadoop

developed and maintained by the Apache Hadoop project. It is helpful to
think about this implementation as a MapReduce engine, because that is
exactly how it works. You provide input (fuel), the engine converts the input
into output quickly and efficiently, and you get the answers you need. You
are using Hadoop to solve business problems, so it is necessary for you to
understand how and why it works. So, we take a look at the Hadoop imple-
mentation of MapReduce in more detail.

Hadoop MapReduce includes several stages, each with an important set of
operations helping to get to your goal of getting the answers you need from
big data. The process starts with a user request to run a MapReduce program
and continues until the results are written back to the HDFS. Figure 9-2 illus-
trates how MapReduce performs its tasks.

Figure 9-2:
Workflow
and data

movement
in a small

Hadoop
cluster.

HDFS and MapReduce perform their work on nodes in a cluster hosted on
racks of commodity servers. To simplify the discussion, the diagram shows
only two nodes.

Getting the data ready
When a client requests a MapReduce program to run, the first step is to
locate and read the input file containing the raw data. The file format is com-
pletely arbitrary, but the data must be converted to something the program
can process. This is the function of InputFormat and RecordReader (RR).

118 Part III: Big Data Management

InputFormat decides how the file is going to be broken into smaller pieces for
processing using a function called InputSplit. It then assigns a RecordReader
to transform the raw data for processing by the map. If you read the discus-
sion of map in Chapter 8, you know it requires two inputs: a key and a value.
Several types of RecordReaders are supplied with Hadoop, offering a wide
variety of conversion options. This feature is one of the ways that Hadoop
manages the huge variety of data types found in big data problems.

Let the mapping begin
Your data is now in a form acceptable to map. For each input pair, a distinct
instance of map is called to process the data. But what does it do with the pro-
cessed output, and how can you keep track of them? Map has two additional
capabilities to address the questions. Because map and reduce need to work
together to process your data, the program needs to collect the output from
the independent mappers and pass it to the reducers. This task is performed
by an OutputCollector. A Reporter function also provides information gathered
from map tasks so that you know when or if the map tasks are complete.

All this work is being performed on multiple nodes in the Hadoop cluster
simultaneously. You may have cases where the output from certain map-
ping processes needs to be accumulated before the reducers can begin. Or,
some of the intermediate results may need to be processed before reduc-
tion. In addition, some of this output may be on a node different from the
node where the reducers for that specific output will run. The gathering and
shuffling of intermediate results are performed by a partitioner and a sort.
The map tasks will deliver the results to a specific partition as inputs to the
reduce tasks. After all the map tasks are complete, the intermediate results
are gathered in the partition and a shuffling occurs, sorting the output for
optimal processing by reduce.

Reduce and combine
For each output pair, reduce is called to perform its task. In similar fash-
ion to map, reduce gathers its output while all the tasks are processing.
Reduce can’t begin until all the mapping is done, and it isn’t finished until all
instances are complete. The output of reduce is also a key and a value. While
this is necessary for reduce to do its work, it may not be the most effec-
tive output format for your application. Hadoop provides an OutputFormat
feature, and it works very much like InputFormat. OutputFormat takes the
key-value pair and organizes the output for writing to HDFS. The last task
is to actually write the data to HDFS. This is performed by RecordWriter,

119 Chapter 9: Exploring the World of Hadoop

and it performs similarly to RecordReader except in reverse. It takes the
OutputFormat data and writes it to HDFS in the form necessary for the
requirements of the application program.

The coordination of all these activities was managed in earlier versions of
Hadoop by a job scheduler. This scheduler was rudimentary, and as the mix
of jobs changed and grew, it was clear that a different approach was neces-
sary. The primary deficiency in the old scheduler was the lack of resource
management. The latest version of Hadoop has this new capability, and we
look at it more closely in Chapter 10.

Hadoop MapReduce is the heart of the Hadoop system. It provides all the
capabilities you need to break big data into manageable chunks, process the
data in parallel on your distributed cluster, and then make the data available
for user consumption or additional processing. And it does all this work in a
highly resilient, fault-tolerant manner. This is just the beginning. The Hadoop
ecosystem is a large, growing set of tools and technologies designed specifi-
cally for cutting your big data problems down to size.

120 Part III: Big Data Management

Chapter 10

The Hadoop Foundation and
Ecosystem

In This Chapter
▶ Why the Hadoop ecosystem is foundational for big data
▶ Managing resources and applications with Hadoop YARN
▶ Storing big data with HBase
▶ Mining big data with Hive
▶ Interacting with the Hadoop ecosystem

A
s Chapter 9 explains, Hadoop MapReduce and Hadoop Distributed
File System (HDFS) are powerful technologies designed to address big

data challenges. That’s the good news. The bad news is that you really need
to be a programmer or data scientist to be able to get the most out of these
elemental components. Enter the Hadoop ecosystem. For several years and
for the foreseeable future, open source as well as commercial developers all
over the world have been building and testing tools to increase the adop-
tion and usability of Hadoop. Many are working on bits of the ecosystem and
offering their enhancements back to the Apache project. This constant flow
of fixes and improvements helps to drive the entire ecosystem forward in a
controlled and secure manner.

In this chapter, you take a look at the various technologies that make up the
Hadoop ecosystem.

Building a Big Data Foundation
with the Hadoop Ecosystem

Trying to tackle big data challenges without a toolbox filled with technology
and services is like trying to empty the ocean with a spoon. As core com-
ponents, Hadoop MapReduce and HDFS are constantly being improved and

122 Part III: Big Data Management

provide great starting points, but you need something more. The Hadoop
ecosystem provides an ever-expanding collection of tools and technologies
specifically created to smooth the development, deployment, and support of
big data solutions. Before we look at the key components of the ecosystem,
let’s take a moment to discuss the Hadoop ecosystem and the role it plays on
the big data stage.

No building is stable without a foundation. While important, stability is not
the only important criterion in a building. Each part of the building must
support its overall purpose. The walls, floors, stairs, electrical, plumbing,
and roof need to complement each other while relying on the foundation for
support and integration. It is the same with the Hadoop ecosystem. The foun-
dation is MapReduce and HDFS. They provide the basic structure and integra-
tion services needed to support the core requirements of big data solutions.
The remainder of the ecosystem provides the components you need to build
and manage purpose-driven big data applications for the real world.

In the absence of the ecosystem it would be incumbent on developers, data-
base administrators, system and network managers, and others to identify
and agree on a set of technologies to build and deploy big data solutions.
This is often the case when businesses want to adapt new and emerging tech-
nology trends. The chore of cobbling together technologies in a new market
is daunting. That is why the Hadoop ecosystem is so fundamental to the suc-
cess of big data. It is the most comprehensive collection of tools and technol-
ogies available today to target big data challenges. The ecosystem facilitate
the creation of new opportunities for the widespread adoption of big data by
businesses and organizations.

Managing Resources and Applications
with Hadoop YARN

Job scheduling and tracking are integral parts of Hadoop MapReduce. The
early versions of Hadoop supported a rudimentary job and task tracking
system, but as the mix of work supported by Hadoop changed, the scheduler
could not keep up. In particular, the old scheduler could not manage non-
MapReduce jobs, and it was incapable of optimizing cluster utilization. So a
new capability was designed to address these shortcomings and offer more
flexibility, efficiency, and performance.

Yet Another Resource Negotiator (YARN) is a core Hadoop service providing
two major services:

 ✓ Global resource management (ResourceManager)

 ✓ Per-application management (ApplicationMaster)

123 Chapter 10: The Hadoop Foundation and Ecosystem

The ResourceManager is a master service and control NodeManager in
each of the nodes of a Hadoop cluster. Included in the ResourceManager is
Scheduler, whose sole task is to allocate system resources to specific running
applications (tasks), but it does not monitor or track the application’s status.
All the required system information is stored in a Resource Container. It con-
tains detailed CPU, disk, network, and other important resource attributes
necessary for running applications on the node and in the cluster.

Each node has a NodeManager slaved to the global ResourceManager in the
cluster. The NodeManager monitors the application’s usage of CPU, disk,
network, and memory and reports back to the ResourceManager. For each
application running on the node there is a corresponding ApplicationMaster.
If more resources are necessary to support the running application, the
ApplicationMaster notifies the NodeManager and the NodeManager negoti-
ates with the ResourceManager (Scheduler) for the additional capacity on
behalf of the application. The NodeManager is also responsible for tracking
job status and progress within its node.

Storing Big Data with HBase
HBase is a distributed, nonrelational (columnar) database that utilizes HDFS
as its persistence store. It is modeled after Google BigTable and is capable of
hosting very large tables (billions of columns/rows) because it is layered on
Hadoop clusters of commodity hardware. HBase provides random, real-time
read/write access to big data. HBase is highly configurable, providing a great
deal of flexibility to address huge amounts of data efficiently. Now take a look
at how HBase can help address your big data challenges.

HBase is a columnar database, so all data is stored into tables with rows
and columns similar to relational database management systems (RDBMSs).
The intersection of a row and a column is called a cell. One important dif-
ference between HBase tables and RDBMS tables is versioning. Each cell
value includes a “version” attribute, which is nothing more than a timestamp
uniquely identifying the cell. Versioning tracks changes in the cell and makes
it possible to retrieve any version of the contents should it become neces-
sary. HBase stores the data in cells in decreasing order (using the time-
stamp), so a read will always find the most recent values first.

Columns in HBase belong to a column family. The column family name is used
as a prefix to identify members of its family. For example, fruits:apple and
fruits:banana are members of the fruits column family. HBase implementations
are tuned at the column family level, so it is important to be mindful of how
you are going to access the data and how big you expect the columns to be.

124 Part III: Big Data Management

The rows in HBase tables also have a key associated with them. The struc-
ture of the key is very flexible. It can be a computed value, a string, or even
another data structure. The key is used to control access to the cells in the
row, and they are stored in order from low value to high value.

All of these features together make up the schema. The schema is defined
and created before any data can be stored. Even so, tables can be altered
and new column families can be added after the database is up and running.
This extensibility is extremely useful when dealing with big data because you
don’t always know about the variety of your data streams.

Mining Big Data with Hive
Hive is a batch-oriented, data-warehousing layer built on the core elements
of Hadoop (HDFS and MapReduce). It provides users who know SQL with
a simple SQL-lite implementation called HiveQL without sacrificing access
via mappers and reducers. With Hive, you can get the best of both worlds:
SQL-like access to structured data and sophisticated big data analysis with
MapReduce.

Unlike most data warehouses, Hive is not designed for quick responses to
queries. In fact, queries can take several minutes or even hours depending
on the complexity. As a result, Hive is best used for data mining and deeper
analytics that do not require real-time behaviors. Because it relies on the
Hadoop foundation, it is very extensible, scalable, and resilient, something
that the average data warehouse is not.

Hive uses three mechanisms for data organization:

 ✓ Tables: Hive tables are the same as RDBMS tables consisting of rows
and columns. Because Hive is layered on the Hadoop HDFS, tables are
mapped to directories in the file system. In addition, Hive supports
tables stored in other native file systems.

 ✓ Partitions: A Hive table can support one or more partitions. These par-
titions are mapped to subdirectories in the underlying file system and
represent the distribution of data throughout the table. For example, if
a table is called autos, with a key value of 12345 and a maker value Ford,
the path to the partition would be /hivewh/autos/kv=12345/Ford.

 ✓ Buckets: In turn, data may be divided into buckets. Buckets are stored
as files in the partition directory in the underlying file system. The
buckets are based on the hash of a column in the table. In the preceding
example, you might have a bucket called Focus, containing all the attri-
butes of a Ford Focus auto.

125 Chapter 10: The Hadoop Foundation and Ecosystem

Hive metadata is stored externally in the “metastore.” The metastore is a
relational database containing the detailed descriptions of the Hive schema,
including column types, owners, key and value data, table statistics, and so
on. The metastore is capable of syncing catalog data with other metadata
services in the Hadoop ecosystem.

Hive supports an SQL-like language called HiveQL. HiveQL supports many
of the SQL primitives, such as select, join, aggregate, union all, and so on. It
also supports multitable queries and inserts by sharing the input data within
a single HiveQL statement. HiveQL can be extended to support user-defined
aggregation, column transformation, and embedded MapReduce scripts.

Interacting with the Hadoop Ecosystem
Writing programs or using specialty query languages are not the only ways
you interact with the Hadoop ecosystem. IT teams that manage infrastruc-
tures need to control Hadoop and the big data applications created for it. As
big data becomes mainstream, non-technical professionals will want to try
to solve business problems with big data. Look at some examples from the
Hadoop ecosystem that help these constituencies.

Pig and Pig Latin
The power and flexibility of Hadoop are immediately visible to software
developers primarily because the Hadoop ecosystem was built by develop-
ers, for developers. However, not everyone is a software developer. Pig was
designed to make Hadoop more approachable and usable by nondevelopers.
Pig is an interactive, or script-based, execution environment supporting Pig
Latin, a language used to express data flows. The Pig Latin language supports
the loading and processing of input data with a series of operators that trans-
form the input data and produce the desired output.

The Pig execution environment has two modes:

 ✓ Local mode: All scripts are run on a single machine. Hadoop MapReduce
and HDFS are not required.

 ✓ Hadoop: Also called MapReduce mode, all scripts are run on a given
Hadoop cluster.

Under the covers, Pig creates a set of map and reduce jobs. The user is
absolved from the concerns of writing code, compiling, packaging, submit-
ting, and retrieving the results. In many respects, Pig is analogous to SQL in

126 Part III: Big Data Management

the RDBMS world. The Pig Latin language provides an abstract way to get
answers from big data by focusing on the data and not the structure of a
custom software program. Pig makes prototyping very simple. For example,
you can run a Pig script on a small representation of your big data environ-
ment to ensure that you are getting the desired results before you commit to
processing all the data.

Pig programs can be run in three different ways, all of them compatible with
local and Hadoop mode:

 ✓ Script: Simply a file containing Pig Latin commands, identified by the
.pig suffix (for example, file.pig or myscript.pig). The commands
are interpreted by Pig and executed in sequential order.

 ✓ Grunt: Grunt is a command interpreter. You can type Pig Latin on the
grunt command line and Grunt will execute the command on your
behalf. This is very useful for prototyping and “what if” scenarios.

 ✓ Embedded: Pig programs can be executed as part of a Java program.

Pig Latin has a very rich syntax. It supports operators for the following
operations:

 ✓ Loading and storing of data

 ✓ Streaming data

 ✓ Filtering data

 ✓ Grouping and joining data

 ✓ Sorting data

 ✓ Combining and splitting data

Pig Latin also supports a wide variety of types, expressions, functions, diag-
nostic operators, macros, and file system commands.

To get more examples, visit the Pig website within Apache.com. It is a rich
resource that will provide you with all the details: http://pig.apache.org.

Sqoop
Many businesses store information in RDBMSs and other data stores, so they
need a way to move data back and forth from these data stores to Hadoop.
While it is sometimes necessary to move the data in real time, it is most
often necessary to load or unload data in bulk. Sqoop (SQL-to-Hadoop) is a
tool that offers the capability to extract data from non-Hadoop data stores,

http://pig.apache.org/

127 Chapter 10: The Hadoop Foundation and Ecosystem

transform the data into a form usable by Hadoop, and then load the data into
HDFS. This process is called ETL, for Extract, Transform, and Load. While
getting data into Hadoop is critical for processing using MapReduce, it is also
critical to get data out of Hadoop and into an external data source for use in
other kinds of application. Sqoop is able to do this as well.

Like Pig, Sqoop is a command-line interpreter. You type Sqoop commands
into the interpreter and they are executed one at a time. Four key features
are found in Sqoop:

 ✓ Bulk import: Sqoop can import individual tables or entire databases
into HDFS. The data is stored in the native directories and files in the
HDFS file system.

 ✓ Direct input: Sqoop can import and map SQL (relational) databases
directly into Hive and HBase.

 ✓ Data interaction: Sqoop can generate Java classes so that you can inter-
act with the data programmatically.

 ✓ Data export: Sqoop can export data directly from HDFS into a relational
database using a target table definition based on the specifics of the
target database.

Sqoop works by looking at the database you want to import and selecting an
appropriate import function for the source data. After it recognizes the input,
it then reads the metadata for the table (or database) and creates a class def-
inition of your input requirements. You can force Sqoop to be very selective
so that you get just the columns you are looking for before input rather than
doing an entire input and then looking for your data. This can save consider-
able time. The actual import from the external database to HDFS is performed
by a MapReduce job created behind the scenes by Sqoop.

Sqoop is another effective tool for nonprogrammers. The other impor-
tant item to note is the reliance on underlying technologies like HDFS and
MapReduce. You see this repeatedly throughout the element of the Hadoop
ecosystem.

Zookeeper
Hadoop’s greatest technique for addressing big data challenges is its capabil-
ity to divide and conquer. After the problem has been divided, the conquer-
ing relies on the capability to employ distributed and parallel processing
techniques across the Hadoop cluster. For some big data problems, the
interactive tools are unable to provide the insights or timeliness required
to make business decisions. In those cases, you need to create distributed

128 Part III: Big Data Management

applications to solve those big data problems. Zookeeper is Hadoop’s way of
coordinating all the elements of these distributed applications.

Zookeeper as a technology is actually simple, but its features are powerful.
Arguably, it would be difficult, if not impossible, to create resilient, fault-
tolerant distributed Hadoop applications without it. Some of the capabilities
of Zookeeper are as follows:

 ✓ Process synchronization: Zookeeper coordinates the starting and stop-
ping of multiple nodes in the cluster. This ensures that all processing
occurs in the intended order. When an entire process group is complete,
then and only then can subsequent processing occur.

 ✓ Configuration management: Zookeeper can be used to send configura-
tion attributes to any or all nodes in the cluster. When processing is
dependent on particular resources being available on all the nodes,
Zookeeper ensures the consistency of the configurations.

 ✓ Self-election: Zookeeper understands the makeup of the cluster and can
assign a “leader” role to one of the nodes. This leader/master handles
all client requests on behalf of the cluster. Should the leader node fail,
another leader will be elected from the remaining nodes.

 ✓ Reliable messaging: Even though workloads in Zookeeper are loosely
coupled, you still have a need for communication between and
among the nodes in the cluster specific to the distributed application.
Zookeeper offers a publish/subscribe capability that allows the creation
of a queue. This queue guarantees message delivery even in the case of
a node failure.

Because Zookeeper is managing groups of nodes in service to a single distrib-
uted application, it is best implemented across racks. This is very different
than the requirements for the cluster itself (within racks). The underlying
reason is simple: Zookeeper needs to perform, be resilient, and be fault tol-
erant at a level above the cluster itself. Remember that a Hadoop cluster is
already fault tolerant, so it will heal itself. Zookeeper just needs to worry
about its own fault tolerance.

The Hadoop ecosystem and the supported commercial distributions are
ever-changing. New tools and technologies are introduced, existing technolo-
gies are improved, and some technologies are retired by a (hopefully better)
replacement. This one of the greatest advantages of open source. Another is
the adoption of open source technologies by commercial companies. These
companies enhance the products, making them better for everyone by offer-
ing support and services at a modest cost. This is how the Hadoop ecosys-
tem has evolved and why it is a good choice for helping to solve your big
data challenges.

	09-Exploring the world of Hadoop
	10-The Hadoop fondation and ecosystem

